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Overview
• Motivation

– Q1: Why do we need additive manufacturing (AM)?

– Q2: What are the physical processes, are they new?

– Q3: Why is it relevant for superalloys?

• Challenges: Defects & Microstructural Heterogeneities

• Current Directions: Modeling, Make, and Measuring

• Future Directions & Opportunities: 

– Sire-Specific Microstructure Control

– Refractory Alloys for Harsh Conditions Designed for AM

• Summary
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Q1: By providing design flexibility, Additive 
Manufacturing is considered as the Renaissance 
of manufacturing

• Today: Additive Manufacturing of Nickel Superalloys

Embedded
Electronics

Hybrids
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Q2: What are the physical 
processes during AM?

– Complex Geometries

– Energy Deposition 

– Melting & Powder 
Addition 

– Evaporation & 
Condensation 

– Heat & Mass Transfer

– Solidification

– Solid-State Phase 
Transformation

– Repeated Heating and 
Cooling – Thermal 
Gyrations
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Q3: Can we use AM to arrive at complex 
geometries and site-specific properties?

• In early 1986, GE researchers invented dual heat 
treatment to arrive at spatial grain structure control.

US Patent 5,527,402, 1986 Mourer and Williams (2004)

Rene 104
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Physical processes are similar to Welding & Joining, but 
with complex boundary conditions…

• Why is it relevant to superalloys?

Design Process 

Selection

Process 

Controls

Geometrical 

Conformity
Qualification 

& Standards

Microstructure

Control

Yang (2008) Elmer (2004) Lim (2010) Lolla (2014)



Challenges
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Most Desirable Materials For Extreme and Harsh 
Environments are Difficult to Process: Materials 
Susceptible to Cracking
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Hot Cracking Solid-State 
Cracking

Decreasing Temperature

Ni-base Superalloy Cracking Mechanisms

Weldability of Ni-base 
Superalloys
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Most Desirable Materials For Extreme and Harsh 
Environments are Difficult to Process: Process, 
Geometry, and Material Linked

Crack Formation in Mar-M247
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Key parameter: Movement of the weld pool, 
rather than the power source!



Current Directions: Inconel 
738 Airfoil Case StudyIn-Situ Defect Detection 

Using AI

Computational 
Modeling

Advanced 
Characterization

Process Optimization

Model

Make

Measure
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Enabling Scan Path Optimization through 
Computational Modeling

Height = 
28.05 mm

Height = 
35.40 mm

• Temporal and spatial distribution of cracking tendency

• Peak tensile stress locations coincided with cracks

• Geometry and default scan pattern interaction
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Stress along 
Y-axis

Temp.

Stress along 
Y-axis

Temp.

Standard 
Strategy 

Alternative 
Optimized 
Strategy

Enabling Scan Path Optimization through 
Computational Modeling



Make In-Situ Defect Detection 
Using AI

Computational 
Modeling

Advanced 
Characterization

Process Optimization

Model

Make
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Manufacturing of Defect Prone Ni-base 
Superalloys Through by EBM

Material: Inconel 738LC (Ni-284-1)

Manufacturing: Two Arcam Q10+ EBM Printers

1600lbs x 4 powder uses/reuses

172 Airfoils

In-Situ Defect Detection 
Using AI

Computational 
Modeling

Advanced 
Characterization

Process Optimization



Measure In-Situ Defect Detection 
Using AI

Computational 
Modeling

Advanced 
Characterization

Process Optimization

Model

Make

Measure
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Input/intent data 

Image data 
(in-situ & ex-situ)

What are the Available Data Streams

Modeling

Real-time measurements

Fluid Mechanics

Semi-Analytical Models

Thermo-
mechanics

(FEM)
Topology

optimization

Scan strategy optimization

Microstructure mapping 

Neutrons

X-Ray

Process 

Parameters

CAD

Material data

EBSD

Thermal

X-Ray / SEM

Sensors

Laser scan

Manufacturing 

strategy

Defect Annotation Tool
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Driving the Next Materials Revolution 
Creating a Framework for Coupling Data Analytics 

with Advanced Manufacturing
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AI/ML for Defect DetectionANN For CT Data Reconstruction

AI for CT Reconstruction and Defect Detection

CT Data Near-IR
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Fuse Intent and Sensor Data to Begin Creating 
Digital Twins
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Defect 
Predictions
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Machine 
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Opportunities: Data 
Driven Microstructures 
and Alloy Design
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Fatigue-resistant Hybrid microstructure 
Components

BD

Localized Conductive Solidification Manipulation

AI Driven Scan Algorithms

Data Driven Microstructure Development

Point Heat Source Control for Structure Control
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2015

Demonstration

2016-2018

Engineered 
Scan 

Strategies

2019

AI Informed Scan 
Strategies 

Future

Microstructure 
Optimized 

Components

Future of Data Driven Scan Strategies

Equiaxed
Columnar
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AM of Refractory Metals for Extreme Environments

iter

TCR

Eliminating Cracking 
and Porosity

Alloy 
Development

Complex 
Geometries

Parameter 
Development

Thin-walled 
Structures

• Next-generation nuclear energy will require 
components from hard-to-manufacture refractories
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Microstructural modeling

Thermodynamics and kinetics 

databases

Phase stability, solidification, 
precipitation, diffusion

Integrating Materials Design with Process 
Optimization for Additive Manufacturing

Matrix of 
compositions 

and 
temperatures

YesMin 𝒇(𝒃𝒓𝒊𝒕𝒕𝒍𝒆) ?

Min (
∆𝝁

∆𝒙
) ?

Min σ𝑱𝒊 ?

Extensive dataset of phase, amount, 
composition, slope of chemical 

potential, diffusion flux,……

Gradient 
compositions  
for additive 

manufacturing

No

Processing 
conditions
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Summary
• Physical Processes of AM: Many of the 

physics, heat and mass transfer, 
solidification and solid-state 
transformations are the same as welding 
and joining with complex boundary 
conditions.

• Challenges: Defect formation and 
microstructural heterogeneities are 
affected by interaction between 
geometry, process, and alloy chemistry!

• Current Directions: Fusion based AM has 
been demonstrated as a reliable 
technology for fabricating non-weldable 
Ni-base superalloys for critical rotating 
applications.

• Opportunities: AM allows for site-specific 
control of microstructure in Ni-base 
alloys through thermal management, 
phase stability and kinetics, even in 
complex geometries. Extendable to 
refractory materials


